Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 402: 110016, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37995854

RESUMEN

BACKGROUND: Neuropixels probes have revolutionized neurophysiological studies in the rodent, but inserting these probes through the much thicker primate dura remains a challenge. NEW METHODS: Here we describe two methods we have developed for the insertion of two types of Neuropixels probes acutely into the awake macaque monkey cortex. For the fine rodent probe (Neuropixels 1.0, IMEC), which is unable to pierce native primate dura, we developed a dural-eyelet method to insert the probe repeatedly without breakage. For the thicker short NHP probe (Neuropixels NP1010), we developed an artificial dura system to insert the probe. RESULTS AND COMPARISON WITH EXISTING METHODS: We have now conducted successful experiments in 3 animals across 7 recording chambers with the procedures described here and have achieved recordings with similar yields over several months in each case. CONCLUSION: We hope that our hardware, surgical preparation, methods for insertion and methods for removal of broken probe parts are of value to primate physiologists everywhere.


Asunto(s)
Corteza Cerebral , Vigilia , Animales , Haplorrinos , Corteza Cerebral/fisiología , Neurofisiología , Electrodos Implantados
2.
bioRxiv ; 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37904996

RESUMEN

Macaque area V4 includes neurons that exhibit exquisite selectivity for visual form and surface texture, but their functional organization across laminae is unknown. We used high-density Neuropixels probes in two awake monkeys to characterize shape and texture tuning of dozens of neurons simultaneously across layers. We found sporadic clusters of neurons that exhibit similar tuning for shape and texture: ~20% exhibited similar tuning with their neighbors. Importantly, these clusters were confined to a few layers, seldom 'columnar' in structure. This was the case even when neurons were strongly driven, and exhibited robust contrast invariance for shape and texture tuning. We conclude that functional organization in area V4 is not columnar for shape and texture stimulus features and in general organization maybe at a coarse scale (e.g. encoding of 2D vs 3D shape) rather than at a fine scale in terms of similarity in tuning for specific features (as in the orientation columns in V1). We speculate that this may be a direct consequence of the great diversity of inputs integrated by V4 neurons to build variegated tuning manifolds in a high-dimensional space.

3.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37425930

RESUMEN

Neuropixels probes have revolutionized neurophysiological studies in the rodent, but inserting these probes through the much thicker primate dura remains a challenge. Here we describe two methods we have developed for the insertion of two types of Neuropixels probes acutely into the awake monkey cortex. For the fine rodent probe, which is unable to pierce native primate dura, we developed a dural-eyelet method to insert the probe repeatedly without breakage. For the thicker NHP probe, we developed an artificial dura system to insert the probe. We have now conducted successful experiments in 3 animals across 7 recording chambers with the procedures described here and have achieved stable recordings over several months in each case. Here we describe our hardware, surgical preparation, methods for insertion and methods for removal of broken probe parts. We hope that our methods are of value to primate physiologists everywhere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...